首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25459篇
  免费   2034篇
  国内免费   329篇
电工技术   114篇
综合类   383篇
化学工业   10979篇
金属工艺   1249篇
机械仪表   218篇
建筑科学   130篇
矿业工程   283篇
能源动力   4722篇
轻工业   1279篇
水利工程   49篇
石油天然气   438篇
武器工业   18篇
无线电   2025篇
一般工业技术   4630篇
冶金工业   390篇
原子能技术   117篇
自动化技术   798篇
  2024年   48篇
  2023年   2001篇
  2022年   914篇
  2021年   1077篇
  2020年   1985篇
  2019年   1627篇
  2018年   941篇
  2017年   1602篇
  2016年   1564篇
  2015年   1626篇
  2014年   2004篇
  2013年   1916篇
  2012年   1420篇
  2011年   1058篇
  2010年   955篇
  2009年   1018篇
  2008年   375篇
  2007年   1239篇
  2006年   1107篇
  2005年   613篇
  2004年   351篇
  2003年   425篇
  2002年   564篇
  2001年   511篇
  2000年   256篇
  1999年   393篇
  1998年   163篇
  1997年   5篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1988年   8篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1951年   31篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
Wen  Pushan  He  Rui  Li  Xiang-Dan  Lee  Myong-Hoon 《Journal of Materials Science》2022,57(1):755-765
Journal of Materials Science - Three polyimides (PIs) were prepared from a diamine containing biphenyl ester group as a side chain and a corresponding dianhydride chosen from...  相似文献   
2.
In this paper, a new kinetic model considering both oxidation and volatilization kinetics is established and applied to analyze the oxidation of SiC-B4C-xAl2O3 ceramics and other systems in various oxidation conditions. The effects of diffusion area and volume changes during the oxidation process are considered in this model. The physical meaning of each parameter in this model is explicit and simple. According to this model, the diffusion coefficient of species and the corresponding diffusion activation energy are easily available. The practicability of this model is well verified by the experimental data of SiC-B4C-xAl2O3 and other systems oxidized under different conditions. In addition, the practice shows that the model is applicable not only to the systems where oxidation and volatilization coexist, but also to the system where only oxidation plays a major role. We hope the model proposed in this work can be used in other materials with more complex environments.  相似文献   
3.
《Ceramics International》2022,48(12):16599-16610
Separation membranes that are prepared from piezoelectric ceramics can generate ultrasound on-line to maintain surface cleanliness. Here, a lead-free piezoelectric support is presented consisting of quartz. The Na2O and Al2O3 were employed as sintering aids to improve the mechanical performance of piezoelectric quartz support while avoid the formation of no-piezoelectric cristobalite. A ZrO2-based thin microfiltration membrane layer was applied on the optimized support. The membrane structure, thus obtained had an average pore size and ultrasonic emission of 270 nm and 5.1 mV, respectively. The stationary permeance of the membrane in the treatment of oil-in-water emulsion was 163 L m?2?h?1?bar?1 (LMH/bar). With the application of alternating voltages of 60 V and 100 V, the permeance increased to 198 and 225 LMH/bar, respectively, and the oil rejection was maintained above 97%. The in-situ ultrasound directly acted on membrane surface, so it removed more fouling resistance at lower power than the external one.  相似文献   
4.
Higher alcohols synthesis (HAS) from syngas (CO/H2) has attracted widespread attention, while the low selectivity and poor stability of the catalysts mainly stumbled its industrial application. In the work, Ni–Co alloy nanoparticles (NPs) derived from Co1-xNixAl2O4 loaded on the SiO2 with large specific surface area were prepared; and during reaction, the highly dispersed Ni–Co alloys were self-optimized to Ni–Co alloy@Co–Co2C. Importantly, Ni–Co alloy@Co–Co2C can be regenerated through oxidation - reduction - self-optimization process. Characteristic results indicated that the structural liberalization during the reaction process inhibited the loss of Ni, regulated and balanced the dual active sites of the catalyst and the Ni–Co alloys were regenerated after the re-oxidation and re-reduction process. The optimized catalyst exhibited excellent catalytic performance, including a high total selectivity to alcohols of 39.3% and an excellent catalytic stability at 250 °C, 3.5 MPa (H2/CO = 2) and a space velocity of 6000 mL (gcat h)?1. In addition, the Ni–Co alloy@Co–Co2C catalyst after stability test could recover its original catalytic performance after re-oxidation and re-reduction. The renewable characteristics and superior catalytic performance of Ni–Co alloy@Co–Co2C made the catalyst to be one of the potential industrial catalysts for HAS.  相似文献   
5.
This study demonstrates the successful development of hybrid mesoporous siliceous phosphotungstic acid (mPTA-Si) and sulfonated poly ether ether ketone (SPEEK) as a proton exchange membrane with a high performance in hydrogen proton exchange membrane fuel cells (PEMFC). SPEEK acts as a polymeric membrane matrix and mPTA-Si acts as the mechanical reinforcer and proton conducting enhancer. Interestingly, incorporating mPTA-Si did not affect the morphological aspect of SPEEK as dense membrane upon loading the amount of mPTA-Si up to 2.5 wt%. The water uptake reduced to 14% from 21.5% when mPTA-Si content increases from 0.5 to 2.5 wt% respectively. Meanwhile, the proton conductivity increased to 0.01 Scm?1 with 1.0 wt% mPTA-Si and maximum power density of 180.87 mWcm?2 which is 200% improvement as compared to pristine SPEEK membrane. The systematic study of hybrid SP-mPTA-Si membrane proved a substantial enhancement in the performance together with further improvement on physicochemical properties of parent SPEEK membrane desirable for the PEMFC application.  相似文献   
6.
An important difficulty associated with alkaline water electrolysis is the rise in anode overpotential attributable to bubble coverage of the electrode surface. For this study, a system with a high-speed video camera was developed, achieving in-situ observation of bubble generation on an electrode surface, monitoring an area of 1.02 mm2 at 6000 frames per second. The relation between polarization curve (current density up to 3.0 A cm?2) and oxygen bubble generation behavior on nickel electrodes having cylindrical wires and rectangular wires of different sizes (100–300 μm) was clarified. The generated bubbles slide upward, contacting the electrode surface and detaching at the top edge. Observations indicate that small electrodes have short bubble residence time and thin bubble covering layer on the electrode. As a result, the small electrode diameter contributes to smaller overpotential at high current density.  相似文献   
7.
Oxygen evolution reaction (OER) is a key process involved in many energy-related conversion systems. An ideal OER electrocatalyst should possess rich active sites and optimal binding strength with oxygen-containing intermediates. Although numerous endeavors have been devoted to the modification and optimization of transition-metal-based OER electrocatalysts, they are still operated with sluggish kinetics. Herein, an ion-exchange approach is proposed to realize the structure engineering of amorphous P–CoS hollow nanomaterials by utilizing the ZIF-67 nanocubes as the precursors. The precise structure control of the amorphous hollow nanostructure contributes to the large exposure of surface active sites. Moreover, the introduction of phosphorus greatly modifies the electronic structure of CoS2, which is thus favorable for optimizing the binding energies of oxygenated species. Furthermore, the incorporation of phosphorus may also induce the formation of surface defects to regulate the local electronic structure and surface environment. As a result of this, such P–CoS hollow nanocatalysts display remarkable electrocatalytic activity and durability towards OER, which require an overpotential of 283 mV to afford a current density of 10 mA cm?2, outperforming commercial RuO2 catalyst.  相似文献   
8.
Carbon-based materials have been often employed as electrocatalytic substrates because of their large surface area/highly porous structure. Similar to carbon substrates, the non-carbon related materials such as transition metals also play an important role in improving catalytic performance. However, the simultaneous synthesis and metallic functionalization of carbon substrates is a highly challenging issue. Herein, a hydrothermal method has been used for the preparation of Ni-functionalized porous carbon balls. The significant role of Ni2+ ions in the synthesis of porous carbon balls has been confirmed. The results of transmission electron microscopy indicate that, the as-prepared porous carbon balls were suitable for the dispersion of Pt nanoparticles with small particle size (less than 4 nm). In addition to providing the OHads species, the Ni can also modify the surface electronic structure of Pt. Electrochemical measurements results reveal that, under the strong interactions between Ni and Pt, the as-prepared porous carbon balls supported Pt nanoparticles (Pt/Ni-CB) catalyst possesses excellent electrocatalytic activity, stability and CO anti-poisoning capability towards methanol electrooxidation reaction (MOR). This work opens a novel idea for the construction of the metal functionalization of carbon substrates and their subsequent applications in other electrocatalytic reactions.  相似文献   
9.
Adjusting the band gap of organic-inorganic composites by chemical bonding can effectively construct Step-scheme (S-scheme) heterojunctions, featuring properties of fast photogenerated charge migration and excellent photocatalytic performance. In this work, a novel perylene-3, 4, 9, 10-tetracarboxylicdiimide (PDI)-titanium dioxide (TiO2) heterojunction is elaborately synthesized through simple solvent compounding method. The monodispersed spherical TiO2 nanoparticles was prepared with the capping agents of oleylamine and oleic acid, and suffered by a ligand exchange process with nitrosonium tetrafluoroborate (NOBF4) to remove oleylamine and oleic acid. The NOBF4 ligands were further replaced by PDI super molecular nanosheets to obtain two dimensional (2D)-zero dimensional (0D) PDI-TiO2 composites. TiO2 nanoparticles are evenly anchored on the surface of PDI nanosheets with intimate contact. The PDI-TiO2 composites has emerged considerably superior activity in hydrogen evolution. The highest hydrogen evolution rate for PDI-TiO2composites with the PDI weight percentage of 2.4% was 9766 μmol h?1 g?1 under solar light irradiation, which is 2.56 times of TiO2-NOBF4 catalyst. Moreover, PDI-TiO2 composites possess stoichiometric overall water splitting performance with H2 and O2 release rates of 238.20 and 114.18 μmol h?1 g?1. The superior photocatalytic performance of PDI-TiO2 composites can be attributed to the dramatic increase in visible and NIR light absorption caused by π-π stacking structure of PDI, the prevented charge recombination by the S-scheme heterojunction, and the enhanced oxygen evolution by the stronger oxidation capability of PDI. PDI supramolecular nanosheets may work as a novel functional support for many types of semiconductor nanomaterials as graphene, which will display a wide range of application prospects in the energy and environmental fields.  相似文献   
10.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号